Synthesizing Ecohydrology Models as a Management Tool for Landscape Conservation

S.K. Brewer¹, T. A. Worthington², R. Mollenhauer², D. Stewart³, and P. Kemp⁴

¹U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University

²Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University

³Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming

⁴International Centre for Ecohydraulics Research, Engineering and the Environment, University of Southampton

<u>Introduction</u>

- Historically, clearly defined disciplinary boundaries
- Development from singledisciplinary studies to multi- and interdisciplinary studies
 - e.g., ecohydraulics: parallel developments between physical and biological sciences

How does turbulence influence the migration of lamprey?

Interdisciplinary research: emerging fields

- Ecohydrology- interface of hydrology and ecology
- Ecohydraulics- water motion and ecology
- Ecologists
- Geomorphologists
- Engineers
- Hydrologists
- Water-resource managers

Sustain both natural ecosystems and the demands placed on them by society

Environmental flows as an example

Model development

- Models associated with hydrology, hydraulics, and ecology are often developed independently
- Number of models has increased considerably
- Which models are most useful for which applications?
- How can models be combined to answer complex questions?
- Initiatives with broader spatial boundaries (e.g., LCC)

Objective

Systematically evaluate prevailing
 hydrologic/hydraulic and ecological models to
 increase our understanding of the simulation
 potential

Methods

 Vote counting meta-analysis to highlight how models are used and bias in application

- 178 ecohydrology and ecohydraulics models identified
- Several models could belong to more than one category (e.g., PHABSIM)
- Models usage generally fell into one of four categories

- 1. Extended use and wide application
- 2. Long history but being replaced by newer approaches
- 3. New models with rapid appeal
- 4. New models yet to catch on

Model	PI	Model	PI N	Vlodel	PI	Model	PI ſ	Model	PI
Hydrology Mod	lels								
AGNPS	0.90	FLATWOODS	0.24	KINEROS2	0.44	REWASH	0.25	THROW	1.00
ANSWERS	0.14	FLUVIAL-12	0.41	KW-GIUH	0.17	RHEM	0.67	TOPKAPI	0.91
BASINS*	1.88	ForHyM	0.38	LARSIM	0.17	RHESSys*	1.35	TR-55	0.90
BBH-B	0.29	ForNBM	0.60	LASCAM	0.08	SAC-SMA	1.95	TREX	0.33
								tRIBS +	
BROOK90	1.15	GENESYS	0.75	LISEM	1.88	SCS-CN	7.71	VEGGIE	1.11
CASC2D	1.11	GLDAS	0.23	LISFLOOD	3.69	SEBAL	0.63	VIC	11.9
CAT	1.00	GRHUM	0.08	L-THIA	1.08	SHAW	0.50	Vmod	0.29
CEQUEAU	0.40	HBV	4.00	MATSIRO	0.58	SHETRAN	1.95	WASH123D	0.75
CHARM	0.13	HEC-6	0.96	MESH	1.00	SIMGRO	0.48	WaSiM-ETH	4.08
CRASH	0.13	HEC-HMS	3.65	MGB-IPH	1.83	SIMHYD	1.64	WASHCLASS	0.45
CREAMS	0.76	HL-RDHM	1.33	MIKE-SHE	6.45	SLURP	1.00	WATFLOOD	1.64
CREST	1.00	HSPF	6.00	MODIPE	1.00	SPAW	0.48	WEAP	1.80
				MultiEXCEL					
DANSAT	1.25	HUMUS	0.50	L	0.50	SPLASH	0.25	WEHY	0.56
DHSVM	2.00	HYCYMODEL	0.75	NRM3	0.17	STARWARS	0.50	WEPP	10.8
DiCaSM	1.33	HYDROTEL	1.08	PAWS	0.33	STORE DHM	0.50	WetSpa	3.00
		IHACRES							
DITCH	0.15	CMD	0.33	PCARES	0.08	STREAM	0.50	WLES	1.00
DORS	0.33	INFORM	1.00	PREVAH	1.83	SWAT	51.1	WMS	0.21
DWSM	0.33	InHM	1.57	PRMS	1.14	SWMM	3.50	YHyM	1.20
EROSION 3D	0.64	ISBA	1.06	PROMET	1.20	TETIS	1.17		
FEMMA	0.50	iTree-Hydro	0.50	RDI/CSEP	0.17	Thales	0.33		

<u>Results</u>

- Selected models from the upper 25% PI
 - 43 models
 - ~1300 papers
 - Similar pattern across years and categories
 - 3-5 hydrology papers published for every publication in other categories

		Model Name	Papers	Countries	US	
		Hydrology Model	<u>S</u>			
		DHSVM	37	5	6	
1970s —	\longrightarrow	HBV	50	32	48	Scandinavia
		HEC-HMS	50	22	15	
		HSPF	50	6	16	
		InHM	21	3	6	
		LISEM	28	14	1	
		LISFLOOD	47	19	12	
2007	\longrightarrow	MGB-IPH	10	7	0	Brazil
		MIKE-SHE	50	20	7	
		PREVAH	22	4	0	
		RHESSys	27	15	8	
		SAC-SMA	34	5	49	
		SHETRAN	34	12	0	
		SIMHYD	16	4	0	
	\longrightarrow	SWAT	50	24	19	Texas A&M
1990s		SWMM	50	17	12	
	\longrightarrow	VIC	50	23	50	U. Of Wash.
2001	\longrightarrow	WaSiM-ETH	38	9	0	Switzerland
		WATFLOOD	20	10	3	
		WEAP	42	27	26	
		WEPP	50	14	26	
		WetSpa	27	14	5	
		Total	799 ¹			

Ecology Models	Papers	Countries	US	
ALFISH	4	1	1	
CAEDYM	28	14	2	
► CASIMIR	4	5	0	Habitat
CENTURY	2	2	1	
FOREST-BGC	2	1	2	
LPJ	13	3	0	
ORCHIDEE	15	58	27	Carbon exchange
PHABSIM	42	12	13	Habitat
PROTECH	23	3	0	Phytoplankton
River2D	24	9	7	Habitat
Total	156			

Category	Study Time Step
Second	0.001 seconds - < 1 minute
Minute	1 minute - < 1 hour
Hour	1 hour - < 1 day
Day	1 day - < 1 week
Week	1 week - < 1 month
Month	1 month - < 1 year
Year	1 year and greater

Hydrology	
Hydraulics	
Water Quality	
Ecology	

Conclusions

- Hydrology models are the most common (flooding, land-use change)
- SWAT, HEC-RAS, and WASP currently are the most flexible models for integration
- Other models linked together often (e.g., MIKE 11 and MIKE-SHE)
- Model renaming by investigators increases difficulty (e.g., Protech)

- Model applications greatest in arid regions and locations with cold-water fisheries
- Over 50% of papers did not explicitly state the model time step (includes those modeling Q)
- Some models very specialized (e.g., ELCOM in lentic systems) whereas others more flexible
- Tradeoff between scale and cost/complexity drive model choice

Acknowledgements

- U.S. Geological Survey, South-Central Climate Science Center
- Oklahoma Cooperative Fish and Wildlife Research Unit
- Chris Zou, Derek Ryder, Dakota McNeil, Dawson McNeil

